CO2/CH4 separation by hot potassium carbonate absorption for biogas upgrading

W. Giacopini et al., Giammarco-Vetrocoke srl, Venice - Italy

Abstract

In biogas upgrading to biomethane, the release of CO2 off-gas into the atmosphere is generally regarded as a carbon-neutral emission, but a significant loss of CH4 can occur in this step: considering the global warming potential of this latter compound, methane slip can worsen or even nullify the CO2 savings associated to biomethane. This study investigates a novel approach for biogas upgrading to biomethane, aimed at reducing the methane loss. A plant based on hot potassium carbonate was fed with 150–200 Nm3 h−1 of biogas from municipal waste. CO2 is removed in a K2CO3 absorption column, with negligible CH4 absorption. An assessment of biomethane quality was performed to check its compliance with recent National and European standard specifications. Results show that a methane slip below 0.1% can be achieved with this technology, thus significantly reducing the greenhouse gas emissions associated to biomethane industry. This leads to a lower capital expenditure because no off-gas post-treatment is required. Heat and electricity consumption were monitored, and operational expense resulted to be lower than membrane separation in the specific case study, by applying life cycle cost (LCC) methodology.

https://doi.org/10.1016/j.ijggc.2019.02.011